Novel microtubule-targeting agents – the epothilones
نویسندگان
چکیده
Epothilones are a new class of antimicrotubule agents currently in clinical trials. Their chemical structures are distinct from taxanes and are more amenable to synthetic modification. Six epothilones have been studied in preclinical and clinical trials: patupilone (epothilone B), ixabepilone (BMS247550), BMS 310705, sagopilone (ZK-EPO), KOS-862 (epothilone D), and KOS-1584. In vitro data have shown increased potency in taxane-sensitive and taxane-resistant cancer cell lines. This enhanced cytotoxic effect has been attributed to epothilone being a poor substrate for p-glycoprotein drug resistance protein and having high affinity to the various beta tubulin isoforms. Phase I clinical data have shown different dose-limiting toxicities for each of the epothilones. These effects are drug specific, dose specific, and schedule of administration specific. While diarrhea and myelosuppression are the dose-limiting toxicities for patupilone and BMS 310705, respectively, neurologic toxicity, as seen with taxanes, is the dose-limiting toxicity of ixabepilone, sagopilone, and KOS-862. In an effort to decrease neurologic toxicity, investigators have modified dosing schedules with limited success. Ixabepilone has the most mature clinical results with published phase II and III data, and regulatory approval for clinical use in the treatment of breast cancer. Ixabepilone has also been combined with other anticancer agents and has regulatory approval in combination with capecitabine for heavily treated breast cancer.
منابع مشابه
Microtubins: a novel class of small synthetic microtubule targeting drugs that inhibit cancer cell proliferation
Microtubule targeting drugs like taxanes, vinca alkaloids, and epothilones are widely-used and effective chemotherapeutic agents that target the dynamic instability of microtubules and inhibit spindle functioning. However, these drugs have limitations associated with their production, solubility, efficacy and unwanted toxicities, thus driving the need to identify novel antimitotic drugs that ca...
متن کاملThe taccalonolides, novel microtubule stabilizers, and γ-radiation have additive effects on cellular viability.
The taccalonolides are novel antimitotic microtubule stabilizers that have a unique mechanism of action independent of a direct interaction with tubulin. Cytotoxicity and clonogenic assays show that taccalonolide A and radiation act in an additive manner to cause cell death. The taxanes and epothilones have utility when combined with radiotherapy and these findings further suggest the additive ...
متن کاملMicrotubule inhibitors: Differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance.
Microtubules are important cellular targets for anticancer therapy because of their key role in mitosis. Microtubule inhibitors (MTI) such as taxanes, vinca alkaloids, and epothilones stabilize or destabilize microtubules, thereby suppressing microtubule dynamics required for proper mitotic function, effectively blocking cell cycle progression and resulting in apoptosis. In spite of their antit...
متن کاملTaxane- and epothilone-based chemotherapy: from molecule cargo cytoskeletal logistics to management of castration-resistant prostate carcinoma.
Challenges in the discovery of more potent agents to treat the castration-resistant prostate carcinoma (CRPC) reflect the frustrating condition due to development of its drug-resistance in addition to hormone-refractoriness. Although among the different CRPC therapy modalities, the chemotherapy regimens might seem conceptually outclassed as exhibiting a scant tumor cell-selectivity if compared ...
متن کاملStabilizing versus Destabilizing the Microtubules: A Double-Edge Sword for an Effective Cancer Treatment Option?
Microtubules are dynamic and structural cellular components involved in several cell functions, including cell shape, motility, and intracellular trafficking. In proliferating cells, they are essential components in the division process through the formation of the mitotic spindle. As a result of these functions, tubulin and microtubules are targets for anticancer agents. Microtubule-targeting ...
متن کامل